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In recent years we have constructed closely packed spheres using the Lubachevsky-Stillinger algorithm to
generate morphological models of heterogeneous solid propellants. Improvements to the algorithm now allow
us to create large polydisperse packs on a laptop computer, and to create monodisperse packs with packing
fractions greater than 70% which display significant crystal order. The use of these models in the physical
context motivates efforts to examine in some detail the nature of the packs, including certain statistical
properties. We compare packing fractions for binary packs with long-known experimental data. Also, we
discuss the near-neighbor number and the radial distribution function (RDF) for monodisperse packs and make
comparisons with experimental data. We also briefly discuss the RDF for bidisperse packs. We also consider
bounded monodisperse packs, and pay particular attention to the near-wall structure where we identify signifi-

cant order.
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I. MODELING OF COMPOSITE PROPELLANTS:
INTRODUCTION

Heterogeneous solid propellants are widely used in the
rocket industry, and are likely to play an important role for as
long as rockets are built. Fundamentally, they consist of oxi-
dizer particles of order 1-100 um diam embedded in a rub-
bery fuel binder. Various choices are possible, but a common
one is ammonium perchlorate (AP) in hydroxy-terminated-
polybutadiene (HTPB), and we imply no lack of generality if
we place our discussion in this context. These components
burn in a thin combustion layer, a few hundred microns
thick, in the neighborhood of the propellant surface. It is also
common to add metal particles to the binder, 10 um or so in
diameter, aluminum being the most common choice. These
burn in the chamber gases at distances well removed from
the surface.

Designers of rockets are concerned with a number of
propellant-related issues, including the burning rate, the ther-
mal and mechanical properties of the propellant, and, for
metallized propellants, the behavior of the metal particles at
the surface, including agglomeration. A study of these in a
virtual engineering framework starts with a model for the
morphology, and the relationship of this model to the physi-
cal reality is an important matter. This paper is concerned
with some aspects of this problem when the model is gener-
ated by the dynamical packing algorithm originating with the
work of Lubachevsky and Stillinger [1], as discussed in
[2,3].

The aforementioned references discuss packs of spheres,
and Ref. [3], in particular, describes strategies for accommo-
dating the wide range of particle sizes that are typical of real
propellants in the generation of packs suitable for combus-
tion simulations. Real AP particles are not spherical, of
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course, but a study of packs of spheroids [4] suggests that
nonsphericity is not an issue insofar as burning rates are
concerned, provided the packs are statistically isotropic.

Burning rates for various AP or HTPB packs are calcu-
lated in [5], and comparisons made there with experimental
data suggest that the effects of morphology on these rates can
be satisfactorily predicted. Because the very smallest AP par-
ticles cannot be resolved numerically, and so must be ho-
mogenized into the binder, the thermal conductivity of the
blend must be calculated and this is discussed in [6]. We
have not had the need to examine the mechanical properties
and behavior of such blends—e.g., effective Young’s modu-
lus, stress augmentation, von Mises stress, etc.—but the ho-
mogenization literature makes it clear that these kinds of
things can depend on the fine statistical details of the packs,
e.g., [7].

When aluminum is an ingredient of the propellant, ag-
glomeration can be an important issue. Agglomeration oc-
curs when the particles come to the surface, reside there for
a while, and during this residence adhere to other particles.
Agglomerates of an order of 100 wm diam are formed in this
fashion, and are subsequently carried into the chamber with
negative consequences, in addition to the positive energy ad-
dition. It would be of great value if the designer could fine-
tune the propellant morphology to generate an agglomerate
size  distribution, which minimizes the negative
consequences.1 No completely predictive strategy has yet
been developed, but there is good evidence that knowledge
of the pack morphology and of the mean agglomerate size
permits the prediction of the size distribution (i.e., the stan-
dard deviation, should the distribution be lognormal). This
prediction is derived from a proximity model—roughly
speaking, particles that are sufficiently close to each other
within the solid will agglomerate—discussed in Ref. [8]. Use
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of this model to explore the effects of morphology requires
the construction of large packs, packs with hundreds of thou-
sands of particles, and these need to be generated in, at most,
a few hours of CPU time. Also, in this as in all combustion
applications, the packing fraction (volume fraction of AP)
must be large.

These remarks should make it clear that there is a need for
the numerical construction of large polydisperse packs that
can be generated quickly and have properties that are close to
those of real packs. This paper discusses the issue. We know
of only one other packing strategy that is used for propellant
modeling, one developed at ATK-Thiokol [9], and at various
places we examine the results of this work.

II. PACKING ALGORITHM

The algorithm is described in [1] and the application to
propellant packs in [2,3]. For the most part, Stillinger and his
co-workers have only been interested in monodisperse packs,
but the propellant application is primarily concerned with
polydisperse packs, with the largest particles being one or
two orders of magnitude larger than the smallest particles.

The algorithm begins with an infinite computational do-
main defined by the periodic continuation of a cube (or
cuboid) in three-dimensional space. Points are randomly as-
signed to this domain at time =0 with random velocities.
For >0 these points grow linearly with time, to generate
spheres. The growth rates vary amongst the spheres and their
distribution defines the final distribution of diameters (of AP
and aluminum particles) in the propellant. The largest par-
ticles have a radius r(f)=at, where 1 is time, capped at 1,,,.
Typically, ¢,,, is not chosen but is defined when the desired
packing fraction is achieved, or when the computation termi-
nates because the pack is “jammed.” We shall call a the
growth rate; smaller particles grow at a slower rate. Overlap-
ping is prevented by including collisions in the algorithm.
Jamming arises when the time between collisions becomes
too small, but we note here and discuss later that, strictly
speaking, within this dynamic framework jamming never oc-
curs as it does in real packs.

Our first version of the algorithm was in no way optimal,
and used a parallel platform message passing interface (MPI)
to generate packs within an acceptable time frame. But re-
cently we have had reason to improve our algorithm so that
it can generate large packs on a laptop in decent time, and
these improvements are described here. We claim no global
superiority of our strategy, only that it is vastly superior to
our old strategy, and enables us to achieve our application
goals.

III. IMPROVED ALGORITHM

The improved algorithm has two major advantages.

(1) Tt enables us to construct large polydisperse packs on
a laptop computer within an acceptable time frame.

(2) Tt accurately depicts rigid sphere packing, and both
packing and statistical results compare favorably with ex-
perimental hard sphere packs.

These improvements arise from the use of strategies
adopted (in some cases, for the first time) from the molecular
dynamics (MD) literature.
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Modern implementations of rigid sphere packing take ad-
vantage of an event-driven molecular dynamics (EDMD) ap-
proach. In EDMD, particles are advanced between “events,”
where an event is loosely defined as anything that changes a
particle’s state. The event could be a binary collision, a col-
lision between a particle and a domain boundary, or a trans-
fer of a particle across an internal or external boundary. In-
stead of advancing the particles by a fixed time step as in
time-driven MD (TDMD), the particles are always advanced
to the next event time. Each EDMD time step therefore re-
quires two tasks.

(1) Find and execute the next predicted event.

(2) Update all event predictions influenced by this event.

These two tasks may be optimized separately. Optimiza-
tion techniques used for the first task usually rely on an ef-
ficient priority queue algorithm. Optimization of the second
task is more difficult and can involve neighbor lists or cell
methods. A typical EDMD method will use a min heap to
find the next event, an upper or lower triangular matrix to
store collision time estimates for binary pairs, and a neighbor
list or cell for each particle to reduce the number of binary
collision prediction calculations. There are many excellent
texts that describe these processes in detail [10,11]. For a
concise description of a modern EDMD implementation us-
ing min heaps and neighbor lists, see Donev et al. [12].

Our EDMD-based packing method uses a priority queue
for event handling and a hierarchical cell scheme to reduce
the number of binary collision prediction calculations for
polydisperse packs. We use a fully object-oriented imple-
mentation in C** that provides complete encapsulation of the
sphere, boundary, and cell objects. With our method it is not
necessary to perform the collision validation checks neces-
sary for our older strategy, nor is it necessary to store a
triangular collision time matrix. In practice, our method has
demonstrated O(N) run times (for monodisperse packs) and
O(N) memory requirements over 10°<N=10°. This makes
it possible to generate the very large polydisperse packs we
need in less than a day using a serial code on a laptop.

Our priority queue implementation uses a binary heap to
process events. Binary heaps are outperformed by Fibonacci
heaps for the find_min function, which has O(In N) com-
plexity for a binary heap, but O(1) for a Fibonacci heap.
However, processing each collision requires one find_min,
one delete_min, and one insert operation, returning the
overall complexity to O(In N) for both heap methods. A par-
allel algorithm might further reduce the run-time cost of the
heap operations [ 13]; unfortunately, the method is based on a
triangular storage matrix for the collision times and thus has
O(N?) memory requirements. A more sophisticated parallel
algorithm using multiple heaps achieves O(N) memory re-
quirements [14] and the additional complexity could be jus-
tified by future requirements for larger packs. However, in
our current applications with N=< 10° the computation time is
dominated by the binary collision prediction calculation.
Thus, for the foreseeable future a binary heap will be suffi-
cient for our purposes.

We use a hierarchical cell structure to reduce the number
of binary collision prediction calculations that are necessary
when updating the collision times. With the cell method, the
particles’ centroids are contained within cuboid cells whose
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maximum enclosed spheres have larger radii than the con-
tained particles. The cell keeps a list of all contained par-
ticles and a list of its boundaries, which may be internal
(local cell boundaries) or external (domain boundaries).
When predicting collisions, an optimized cell method can
reduce the prediction computation time per particle to con-
stant time; this is because only collisions between particles in
neighboring cells need be computed. There are additional,
inexpensive calculations to determine when the particle
passes out of the cell into a neighboring cell or when a par-
ticle interacts with a boundary. Both cell transfers and
boundary interactions are treated as events, and thus partici-
pate in the priority queue.

Although hierarchal cell methods have been implemented
in two dimensions [ 15], we are not aware of any other analy-
sis or implementation of the three-dimensional case. In our
implementation, the cells are arranged in a three-dimensional
tree structure. When particles outgrow their current cell, they
are transferred up the tree to their cell’s parent. In the transfer
event, the particle is removed from its previous level so that
it is always associated with a unique level. Since the binary
collision calculation is required for a given particle with all
other particles in the neighboring cells, the volume searched
is proportional to r”, where r is the cell radius and D is the
dimensionality. Thus, it is advantageous to have each particle
in the smallest cell that is practical in order to reduce the
volume (and thereby reduce the number of binary pairs).
Because of this, our implementation does not require the tree
to be an octree. In our implementation, the number of cells at
each level and in each dimension need only be integer mul-
tiples of the level immediately above it. However, in practice
we have found octrees to perform well for very polydisperse
packs, so the remainder of the results and discussion in this
paper pertain to the octree implementation.

Figure 1 is a one-dimensional cartoon of the cell hierar-
chy showing search paths for sphere 1 interacting with
spheres 2 and 3. Shading denotes cells that must be checked
as well as the pathways that are traversed to find these rel-
evant cells: (a) sphere 1 is located in a cell at the bottom of
the tree and must search upwards through parent cells recur-
sively; (b) sphere 1 is located at an intermediate level and
must search upwards and downwards recursively; and (c)
sphere 1 is moving in the direction indicated, and the trajec-
tory calculation is used to recursively rule out subtrees that
are not relevant. Were the trajectory method not used, all of
the cells in (c) would need to be checked. In three dimen-
sions, the number of ruled-out cells typically exceeds the
number of checked cells by a factor of 3.

The computational efficiency of the basic cell hierarchy
scheme breaks down when the particles have very different
radii. This is due to the rP search volume needed by the
larger particles. For example, the smallest particles need only
search their neighboring cells and their parents’ neighboring
cells, recursively all the way up the tree, with computation
time £ % Noman3°h, where Ny, is the number of small
particles and 4 is the height of the tree. At worst, 7., Srows
linearly with A, resulting in a very efficient search. By com-
parison, the largest particles must search their subtree along
with all of their neighbors’ subtrees, with tlargeOCNlargQD(l
—2P")/(1-2P). The search time is proportional to a geomet-
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FIG. 1. A one-dimensional cartoon of the cell hierarchy search
paths (see the text).

ric series and is very expensive, even for h=2. The fj,e
could be partially offset in an optimistic scenario where there
is one large particle per cell at the top of the tree. In that
case, we might expect Moo/ Noman © 2-P=1) 'leading to over-
all computational time

2—D(h—1) -1
b (1)

Toverall & Nsmall3D(h + 1- 2D
This situation would arise, for example, if a pack was made
by first completely filling the domain (until jammed) with the
largest particles and then packing the smallest particles into
the voids. The second term in parentheses in Eq. (1) would
then be very small, and the run time would be negligibly
affected by the polydispersity. In most relevant packings,
however, we have fewer large particles than large cells. It is
also unlikely that many, if any, of the particles’ final radii
will exactly match their container cells’ radii (perfectly opti-
mized cell sizes) or that any particle size modes will have
radii that are a multiple of 2 times any other particle size
mode (the best case scenario for an octree). Thus, in more
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realistic polydisperse packs the overall run time is dominated
by the calculations for large particles with their smaller
neighbors. Because of this we construct the octrees by first
attempting to fit the final radii of the largest particles as close
as possible. After the largest cells are constructed, they are
subdivided recursively. Subdivision is ended when the next
subdivision would create cells too small to contain the small-
est particles.

We use a large particle trajectory cell selection method to
avoid the geometric series dependence of the overall compu-
tation time. In our method, the subtree cells are treated as
(stationary) spheres themselves, and collision times are com-
puted between the cells and the large particle of interest. The
cell sphere is constructed as the smallest cell-centered sphere
that encloses both the cell and any particle it could possibly
contain. If the large particle will not collide with the cell,
then any particles in the cell are ruled out. The procedure is
recursive through the cell’s offspring, so that the complete
subtree is instantly also ruled out. To further optimize the
calculation, the trajectory of the large particle that is used in
the cell collision calculation is bounded by the current best
estimate of the next collision time for the large particle. This
straightforward trajectory selection process reduced the over-
all computation time by a factor of 4 for the polydisperse
packs in this paper.

The cell scheme has the additional advantage of being
well suited for handling various boundary geometries. We
use three types of boundary conditions: rigid planar, periodic
planar, and cylindrical. Rigid planar boundaries are easily
handled by computing the binary collision between a particle
and its reflection across the plane. For simulating the very
large packs needed for energetic material modeling, we use
periodic boundaries. A periodic cuboid has 26 neighboring
images which must be included in the calculation, which
could increase the computational burden 27-fold. Fortu-
nately, with the cell hierarchy, boundary cells are computed
as if they were inner cells, and the computational time is
negligibly larger than the equivalent rigid planar calculation.

We also implemented a cylindrical boundary that more
accurately reflects the geometry used in many experiments
and real-world packs. The cylinder is bounded at each end by
either rigid planar or periodic planar boundaries. Collisions
with the cylinder are calculated by projecting the sphere onto
a plane perpendicular to the cylinder axis and then comput-
ing the collision time between the two circles. This boundary
is also easy to implement in the cell hierarchy simply by
linking the boundary to the cells at the periphery of the cyl-
inder. Figure 2 shows an example of a polydisperse cylindri-
cal pack; it contains 70 008 particles with a ratio of largest
diameter to smallest of 29.3 and was constructed on a laptop
in 20 h. Note, however, that computational times are strongly
dependent on the stopping criterion, the definition of jam-
ming. Thus Kansai er al. [16] report the construction of a
bidisperse pack of 10000 particles, size ratio 10, that took
48 h on a 1 GHz Pentium machine, but do not specify the
stopping criterion, and so a comparison with our calculation
is not possible, although we can note that for their code the
scaling with particle number is roughly N2. However, our old
code, similar in most important respects to that used in [16],
is not suitable in a serial version for the generation of the
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FIG. 2. (Color) A polydisperse cylindrical pack, periodic along
the axis, size distributions from Table 1.

packs needed for our combustion simulations, and the im-
provement we have been able to achieve is substantial. Much
of this improvement is due to the use of a cell hierarchy,
rather than neighbor lists.

Note that although in our application we are interested in
large polydisperse packs such as the one shown in Fig. 2,
experimental data with which we can compare the properties
of our numerically generated packs is only available for rela-
tively simple packs, and these comparisons occupy the sig-
nificant part of our discussion. All of the packs generated in
the paper have periodic planar boundary conditions, unless
explicitly specified differently.

IV. COLLISIONS

As we noted earlier, collisions must be accommodated in
order to avoid particle overlap. Moreover, these must be
pointwise-in-time events to fit within the general framework
of the algorithm. Because each particle is growing and there
is an outward surface velocity relative to the centroid, a clas-
sical elastic collision does not guarantee a pointwise event,
and in some cases, depending on the collision speeds and
the growth rates, it is necessary to add extra impulses, gen-
erating increments to the rebound velocities. The original
Lubachevsky-Stillinger algorithm uses the relative velocity
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TABLE 1. Left columns: coarse and fine AP distributions used in
Fig. 2. Right columns: aluminum distribution.

Number Diameter Number Diameter
2 348.320 2 99.685
3 324.110 6 92.135
4 301.580 12 85.155
6 280.615 23 78.705
8 261.110 39 72.745
11 242.960 61 67.235
13 226.070 92 62.140
16 210.355 134 57.340
18 195.730 186 53.080
21 182.125 252 49.060
22 169.465 329 45.345
23 157.685 418 41.910
24 146.725 516 38.735
23 136.525 619 35.800
22 127.035 723 33.090
20 118.205 823 30.585
18 109.990 912 28.265
15 102.345 985 26.125
13 95.230 1037 24.150
10 88.610 1064 22.320
8 82.450 1065 20.630
6 76.720 1039 19.065
4 71.390 989 17.620
3 66.425 918 16.285
2 61.805 831 15.050
1 57.510 733 13.910
1 52.156 632 12.855
2 24.000 530 11.885
44 30.160

184 26.975

540 24.125

1312 21.575

2792 19.295

5316 17.260

9180 15.435

14464 13.805

20879 12.350

of the particle surfaces when computing impulses, and en-
ergy is added at each collision; our old version uses the cen-
troid velocities with rebound additions for every collision
that depend only on the growth rates, and not on the collision
speeds. Of particular relevance is the ratio of the growth rate
a; (=a for the most rapidly growing particles) to the speed
[v]|. After many collisions in which the kinetic energy is
enhanced this ratio can become very small so that little
growth occurs between collisions, and jamming cannot be
achieved within a reasonable time frame. Also, it can become
impossible to generate low-density jammed packs. Because
of this, it is necessary to manage the kinetic energy of the
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pack and, in some sense, minimize its growth. The qualifi-
cation is necessary because it is only the increase in energy
that arises from changes in speed that is of concern, not from
the changes in mass.

The literature abounds with methods to counter the in-
crease in kinetic energy. The simplest method is to periodi-
cally renormalize the velocities of all particles either by res-
caling [11] or by setting the velocities to zero (this method is
only relevant when the pack is nearly jammed, see, for ex-
ample, [1]). In either case, the renormalization requires re-
starting the priority queue, which is an expensive operation.
Rescaling the velocities has also been shown to violate en-
ergy equipartition [17], which could be problematic. Another
interesting technique borrowed from molecular dynamics is
the use of stochastic thermostats that place the pack into
contact with an imaginary heat bath. Some of these, such as
the Andersen thermostat [ 10], can be implemented as random
collisions with ghost particles, and can thus be integrated
into the EDMD scheme as a single-particle event. However,
the Andersen thermostat in particular has been shown to pol-
lute the transport coefficients [10] and thus can reasonably be
expected to reduce the efficiency of sampling the configura-
tion space during packing. The Lowe-Andersen thermostat
removes this shortcoming by considering particle pairs, and
it appears to be a promising alternative for efficient packing
[18]. Unfortunately, all stochastic thermostats become ineffi-
cient as the collision frequency increases because they re-
quire additional event predictions at each thermostat colli-
sion and also because they require several independent
random numbers. When packing spheres, high quality ran-
dom number generators such as the Mersenne Twister [19]
produce a double precision number in the time it takes two
binary collisions to be calculated. Thus for high growth rates
and the corresponding need for many thermostat collisions,
the additional events and random number generation can
dominate the computation time.

Our approach is to simply minimize the amount of energy
added during each binary collision. When none is needed,
none is used; when it is needed an amount is added sufficient
merely to cause the surfaces to move away from each other
at a minimal speed, say 1073, The amount of energy added
in this way is monitored by defining and calculating a
pseudotemperature, a substitute for the set of growth-rate or
speed ratios. This pseudotemperature also plays a role in the
specification of the initial velocity distribution at the start of
the calculation, and links the algorithm more closely to a
molecular dynamics framework. In our earlier calculations
the velocity components were randomly sampled from the
interval [—1,1]; here we sample from a Maxwellian (normal)
distribution.

We are only interested in situations when N, the number
of particles in the pack, is large, and it makes the discussion
of our pseudothermodynamics more agreeable if we suppose
that N is an asymptotically large parameter. Then the classi-
cal definition of temperature is related to the mean kinetic
energy of the particles by

3 1 .
k== ~mls
Sr=13 I

1

% (2)

where k is Boltzmann’s constant. Each mass is given by
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4
m;= Ep'n'rl-3 = gp'n'(a,»t)S, (3)

and it is this #* dependence that is not relevant to us. And so
we define a pseudotemperature by

1 al
T=—2 —|v|P, 4

w2 el @
nondimensional when the velocities are appropriately de-
fined. Initial values are defined by

. [Ty
Vio= 5(01,02,(13), (5)
i

where 7|, is the initial temperature, and the «; are sampled
from independent normal distributions.

Thus the system starts out in thermal equilibrium (small
particles travel faster, on average, than large particles) and
would remain so were it not for the inelastic collisions. Note
that the Maxwellian is consistent with Eq. (2). Note also that
this approach could also be applied to systems of particles
with rotational degrees of freedom to ensure the packing ini-
tially satisfies equipartition of energy.

We use a simple method for determining when a pack has
jammed. During the run, the packing fraction is computed
after each “pass,” where a pass is defined as a set of N
sequential interparticle or solid boundary collisions (particle
transfers and other events are not counted). It is of course
unlikely that all N particles will participate in collisions in
any given pass; nevertheless, the concept of a pass allows us
to discuss jamming independently of the number of particles
N. We simply stop the pack when the change in the packing
fraction over a pass is less than some specified limit value,
e.g., the jamming criterion after the ith pass is (p;—p;_1)/p;
<&, where ¢ is the limit value.

For monodisperse packs, ¢ is closely related to the “dis-
tance to jamming” (1—p/p,), where p; is the jamming den-
sity (see [20] for a detailed discussion of pack properties as
this distance approaches zero). To see this, we start with the
fact that p is proportional to #* so that in the last pass,

Aplp=3Atit ~ &, (6)

where Ar is the length of the pass, and we have linearized,
since p is close to the limit value p;. At the beginning of the
pass, when the particle diameter is d, the gap between each
particle is ~(d,—d), so that since p is proportional to d°,

(gap) ~ (d/3)(1 - p/p;) = (at/3)(1 - plp,). (7

Thus the time interval before a particle collides with its
neighbor is

~(at/3c)(1-plp)), (8)

where c is the representative surface speed, the sum of the
growth rate a, and a positive translational speed. But in this
interval ~N collisions occur, so that it is the length of the
pass, and comparing Egs. (6) and (8) we have

g~ (alc)(1-plpy). )
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(a)

(b)

()

FIG. 3. Lattice packs. (a) Double Nested, (b) Close Pack (Side
1), (c) Close Pack (Side 2)

Throughout the paper we generate most of the packs us-
ing the improved algorithm, a serial code with temperature-
based initial conditions, what we shall call the T algorithm;
growth rates are normalized with a so that the maximum
growth rate is 1 and the velocity—growth-rate ratio is con-
trolled by T,,. But there are a few results obtained using the
old parallel code for which velocity components are sampled
on the interval [—1,1] and the ratio is controlled by a; we
shall call this the a algorithm.

V. MONODISPERSE PACKS

In this section we examine monodisperse packs. There is
a maximum packing fraction for a monodisperse pack of
spheres, well defined for lattice packs, less so for random
packs. Lattice packs are characterized by regular repetitive
structures. Thus (see [21]) we have cubic lattice—53.36%,
orthorhombic—60.46%, double-nested—69.81%, and close-
packed—74.05%, the largest attainable for monomodal
spheres. The last two arrangements are shown in Fig. 3. As
we shall see, the close-packed lattice is relevant to order that
we obtain for high-density packs, and near rigid boundaries.
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FIG. 4. Final packing fraction as a function of inverse growth
rate (a algorithm).

The very concept of random packs is not well defined,
because all packs, whether generated experimentally or nu-
merically, have some degree of order. Equally, maximum
packing fractions are not well defined. But attempts to create
random packs typically lead to packing fractions in the range
of 59%—-64% where values at the low end are characteristic
of what are called loose packs (LRP), and values at the high
end are characteristic of what are called dense packs (DRP)
[21,22]. (It is a minor syntactical misfortune that dense packs
are not called tight packs.)

The a algorithm is capable of modeling both jammed LRP
and DRP by varying the growth rate; except for extremely
small growth rates, the smaller the growth rate the higher the
packing fraction. Figure 4 shows this for three monomodal
packs of 3000 spheres, the packs differing because of differ-
ent initial conditions. The bar for each choice of a shows the
maximum, minimum, and average fractions. End values are
60.74% for a=100 (an LRP) and 64.78% for a=0.01 (a
DRP). The ballistic-deposition algorithm used by Webb and
Davis [9] yields a value of 60%. Experimental data obtained
using mechanical shaking can be found in [21] (62.5%) and
[22] (64%).

Figure 5 shows the packing fractions that can be achieved
with the T algorithm, to be compared to Fig. 4. We are not

0.72

o e
o N
© =)

Packing fraction
(=]
o
[=2]

0.62

FIG. 5. Packing fraction of a 10 000 particle pack as a function
of the initial temperature Ty, (7T algorithm).
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FIG. 6. Number of passes used to generate Fig. 5, e=107".

aware of any other reports of packing fractions greater than
0.7 obtained using the Lubachevsky-Stillinger algorithm.
The corresponding number of passes before jamming is
achieved are plotted in Fig. 6; € is equal to 107’ High tem-
peratures generate packs of higher density than that of a
double-nested lattice, implying significant order. Later, we
shall see that these ordered packs have many of the statistical
characteristics of a close-packed lattice. That packs gener-
ated using low temperatures have less order than those gen-
erated using high temperatures is clear from Figs. 7 and 8§,
the former (packing fraction equal to 0.6283) calculated for
Ty=1, the latter (packing fraction equal to 0.7035) for Ty
=10°. Figure 8 looks very much like a lattice pack with
dislocations, whereas Fig. 7 is far less regular.

VI. BIDISPERSE PACKS

Typical packing fractions for propellants are in the neigh-
borhood of 78%, and so for this purpose monodisperse packs
have little relevance. Here we discuss bidisperse packs, the
simplest of the polydisperse variety, and packs for which
there is experimental data. The fine component can fill some
of the spaces between spheres of the coarse component, and
therefore generate higher packing fractions. Not surprisingly,
the greater the ratio between the size of the coarse compo-
nent and size of the fine component, the greater is the maxi-
mum packing fraction. The maximum is attained at a

FIG. 7. A 10000 particle pack for T,=1, packing fraction
0.6283.
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FIG. 8. A 10000 particle pack for Ty=10", packing fraction
0.7035.

uniquely defined value of the ratio of the volume fraction of
coarse to that of fine.

The earliest reports of polydisperse packs obtained using
the Lubachevsky-Stillinger algorithm may be found in
[2,3,16], the latter a discussion of bidisperse packs only.
Here we compare numerical results for bidisperse packs with
experimental data of McGeary [21].

McGeary created a number of bidisperse packs. The size
of the particles was defined by using meshes, a standard
procedure in the particle sorting business. He used seven-
mesh spheres as a coarse component together with several
finer components, achieving a maximum packing fraction of
approximately 84% for the finest. We compare McGeary’s
data with numerical results for two growth rates, a=0.2, and
a=1 (a algorithm). We also plot results from [9] generated
using a ballistic-deposition strategy.

3.4:1
85
—e— McGeary
- A - Rocpack, a=0.2
-9 -Rocpack, a=1.0
80- —=— Webb & Davis -
75+ :

Volume Fraction (%)

L L
0 20 40 60 80 100
Fine Mode (%)

FIG. 9. Packing fraction vs fine-mode percentage for a 3.4:1
coarse-to-fine size ratio.
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6.5:1
85 ;
—e— McGeary
- A - Rocpack, a=0.2
- € - Rocpack, a=1.0
80~ —&— Webb & Davis ||

Volume Fraction (%)

L L
20 40 60 80 100
Fine Mode (%)

FIG. 10. Packing fraction vs fine-mode percentage for a 6.5:1
coarse-to-fine size ratio.

VII. COARSE-TO-FINE SIZE RATIO 3.4:1

This models the experiments with seven-mesh and 20-
mesh, and 20 000 spheres were used in the simulations; com-
parisons are shown in Fig. 9. Except at a fine-mode fraction
of 20, the results for a=1 are in excellent agreement with
McGeary’s data. It is difficult to pin down with precision the
location of the maxima, but for a=1 the two largest calcu-
lated packing fractions correspond to the coordinates (30,
0.7049) and (40, 0.7038); for a=0.2 they are (25, 0.7255)
and (30, 0.7262). The Webb and Davis results peak early, and
then underpredict.

VIII. COARSE-TO-FINE SIZE RATIO 6.5:1

This models the 7/40 mesh study of McGeary, using
50 000 spheres, and the results are shown in Fig. 10. The
slower growth rate (a=0.2) gives the closest agreement with
experiment, with the largest calculated packing fraction of
78.35% at a fine-mode percentage of 30. When a=1 the
results deviate significantly from the experimental values in
the fine-mode percentage interval (20,40)%; the largest cal-
culated value is 74.84% at a fine-mode percentage of 40%.

IX. COARSE-TO-FINE SIZE RATIO 16.5:1

The largest size ratio is achieved with 7/80 meshes and
the simulations use 80 000 spheres; only results for a=0.2
are shown (Fig. 11). Agreement with experiment is very
close, with a largest calculated value of 82.01% at a fine
percentage of 25. In all of the cases we discuss here, the
ballistic-deposition algorithm typically yields packing frac-
tions significantly lower than the experimental values. In
such an algorithm there is, of course, no tuning parameter
comparable to a. Whether this matters depends on the appli-
cation. In the modeling of a propellant with a significant
fraction of very fine AP, so fine as to be unresolvable numeri-
cally, a relatively low packing fraction for the resolvable
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16.5:1
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- A -Rocpack, a=0.2
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FIG. 11. Packing fraction as a function of fine-mode percentage
for a 16.5:1 coarse-to-fine size ratio.

particles might be all that is needed, with the remaining frac-
tion homogenized into the binder. But in other situations, the
inability to reach experimentally attainable packing fractions
could mean that the strategy is not useful.

It is important to note that the construction of polydis-
perse packs is much more computationally intensive than the
construction of monodisperse packs, and the use of hierar-
chal cells rather than neighbor lists plays a crucial role in
increasing the efficiency of the algorithm so that a serial
platform can be used. All of the old work cited in this section
[2,3,16], uses neighbor lists, and as a consequence it was
necessary for us to partially parallelize the code (not the
heaps) in order to generate packs for our combustion studies
[5,6].

X. STATISTICAL ANALYSIS OF PARTICLE PACKINGS

The previous section focused on the packing algorithm
and the products of this algorithm were characterized merely
by the packing fraction and by two related concepts, loose
and dense packings (LRP and DRP). The algorithm generates
different jammed-state packing fractions according to the
choice of the growth parameter a, or the initial temperature
Ty, and variations in the fraction correspond to variations in
the inner structure. Thus experimentalists report that a DRP
can only be achieved with strong shaking or shocking,
whereas this is not necessary for an LRP. The nature of the
inner structure is of intrinsic interest, but also, from the pro-
pellant modeling perspective, it is relevant to the simula-
tions. Certain thermal and mechanical properties of the pack
are likely to depend on it, and bounds and estimates for these
quantities in the homogenization literature often depend on
its statistics. Thus it is relevant to discuss the statistics and,
where possible, compare them with experimental data.

Here and earlier we wrote of “jamming.” From an algo-
rithmic point of view this can refer simply to the state in
which the time between collisions is so small that the calcu-
lation is effectively stalled, but more precise discussions are

PHYSICAL REVIEW E 77, 046107 (2008)

possible. Indeed, Donev et al. define the concepts of local
jamming, collective jamming, and strict jamming [23]. Local
jamming occurs when each particle in a subset of the pack is
locally trapped by its neighbors and is unable to translate.
Such particles are necessarily touched by at least d+1 peers
not in the same hemisphere where d is the spatial dimension.
In three dimensions this condition is fulfilled for spheres
with more than three contacts. Particles with fewer contacts
are called rattlers, since they can move.

Doneyv et al. note that computer-generated packs often do
not satisfy the local jamming criterion. That is certainly true
of packs generated using the Lubachevsky-Stillinger code
and its variations, as a small gap exists between all particles
when the computation ceases. However, given enough com-
puter time, most gaps can be made arbitrarily small, and the
number of contact points between particles can be well de-
fined [20]. For those concerned with the important math-
ematical questions associated with packing, and for whom
packs of modest size are sufficient, this is important. We,
however, are concerned with generating large packs in rea-
sonable times, and are not concerned with sophisticated
mathematical questions, but with whether the pack statistics
match those of experimental packs. In the determination of
experimental morphology (by X-ray tomography, for ex-
ample) there is error, both from measurement uncertainties
and the reconstruction algorithm. Then contact is only de-
fined within the constraint of a tolerance. Thus, to make
comparisons with the numerical results we also use a toler-
ance, and particles are said to be in contact if their closest
surface separation is smaller than some assigned constant.
This is not a new idea; see, for example, Refs. [22,24,25].

Packing structure as well as particle organization can be
characterized using spatial statistics, something that has been
done for a long time. Most recently, Aste et al. generated a
number of experimental packs of up to 150 000 monomodal
spheres inside a cylindrical container and then analyzed them
using XCT (x-ray computed tomography) to identify the
placement of centers; statistical analyses were then possible
[22]. A number of theoretical studies on ideal or modeled
packs are reported in [26,27,24,20,9].

Here we discuss pair correlation and coordination number
for monodisperse packs of varying packing fraction; one
would expect that the degree of order is related to the pack-
ing fraction. We also discuss high-density lattices, experi-
mental results, and correlate certain features of the statistics
with certain kinds of order. And we briefly discuss pair cor-
relation for bidisperse packs.

XI. COORDINATION NUMBER

It is known that a single sphere can touch at most 12 equal
spheres [28], a condition satisfied by a close-packed lattice.
If all spheres in a pack are jammed, each must be in contact
with at least four others. The mean number of contacts is
called the coordination number (or contact number or kissing
number).

Experimental results of Bernal and Mason for monodis-
perse packs [29] reveal an average number of contacts of 6.4
for a dense packing (packing fraction 62%) and 5.5 for a
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FIG. 12. Average near-contact number as a function of X=1
+€ (35000 particles) for three packing fractions, compared with
data of Aste et al.

loose packing (packing fraction 60%). Also, a near-neighbor
(or near-contact) number was determined for these packs,
where a near-neighbor to a reference sphere is defined as a
sphere whose center is separated by no more than 1.05 di-
ameters from the center of the reference. These numbers are
8.5 and 7.1. In general, near neighbors can be defined using
1+ € instead of 1.05, and it is common, if € (the tolerance) is
small (0.01 for example), to identify these near-neighbor
numbers with the contact numbers. Clearly the contact num-
ber is a function of € and if € is smaller than & the
Lubachevsky-Stillinger algorithm will generate packs with
zero contact number.

Figure 12 shows variations in the contact number with 1
+e=X for three different packs of 35000 particles, the
packs differing one from the other because of different
choices of a. Similar curves are reported in [30,24], but here
we include comparisons with experimental data obtained by
Aste and his colleagues. They have studied monodisperse
packs using x-ray tomography [31,22] and have provided us
with their raw data so that we might make comparisons.
Single pack results obtained by us and by Donev et al. [20]
are shown in Fig. 13.

Table II lists the contact number for some experimental
data and for packs that we have generated (the inhouse name

PHYSICAL REVIEW E 77, 046107 (2008)
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FIG. 13. Average near-contact number as a function of X
(35 000 particles) for a single packing fraction, compared with data
of Aste et al. and results of Donev et al. [20].

for our code is Rocpack) for various values of e. Of particu-
lar interest is the data of Gotoh as he used a large number of
particles, as needed for results to be statistically significant.

XII. RADIAL DISTRIBUTION FUNCTION (RDF)

The concepts of touching number and rattlers (which we
do not discuss) are nearest-neighbor concepts, but the statis-
tics of particles at greater distances are of importance, and
this brings us to the radial distribution function, also known
as the pair distribution or pair correlation. It is defined as the
probability of finding a particle center at a distance between
r and r+Ar from the center of a reference sphere [25]. The
discrete definition is

Va(r,Ar)
’A = b
8(r,Ar) NAmr*Ar

(10)

where N is the number of particles in the pack, V is the pack
volume, and n(r,Ar) is the number of particles in the shell of
inner radius » and thickness Ar. This is averaged over all
particles; it asymptotes to 1 as r— oo,

It is obvious that some separation distances are more
likely than others. For example, in a monodisperse pack

TABLE II. Average contacts n, of Rocpack and experimental packings (data from [29,30,32]). Whether
the smallest value of X is an appropriate value for the first column data of Bernal and of Mason is not clear

from their reports.

Source Fraction N n.(1.005) n.(1.02) n.(1.05) n.(1.1)
Bernal-LRP 60% 420 5.5 N.A. 7.1 N.A.
Bernal-DRP 62% 476 6.4 N.A. 8.5 N.A.
Mason N.A. 536 4.7 6.8 8.0 8.9
Gotoh 63.6% 7934 N.A. 7.05 8.0 9.0
Rocpack-LRP 59.95% 35000 5.22 6.04 7.00 8.06
Rocpack-Mid 62.55% 35000 6.15 6.81 7.67 8.69
Rocpack-DRP 64.03% 35000 6.62 7.27 8.10 9.09
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FIG. 14. Possible sphere configurations and the location of cor-
responding peaks in the RDF. (a) Four close spheres, (b) Tetrahe-
dron configuration.

contact particles will be separated by the diameter d so that
we would expect the RDF to have a sharp peak at X=r/d
=1. The location of other peaks at X =3 and %\JE can be
understood by referring to the arrangements drawn in Figs.
14(a) and 14(b). The peak at 2 corresponds to three spheres
in a row.

XIII. RDF OF MONODISPERSE PACKS

In calculating the RDF for a prescribed pack, it is neces-
sary to make a choice of Ar. If too large, the function is
smoothed and peaks are obscured; if too small the noise gen-
erated because only a finite number of particles are used can
also obscure the peaks. And so it is necessary to make some
trial runs to optimize the choice. We do not show the results

---p=59.95%
| —p = 62.55%||
—p = 64.03%

9(Xx)

0.5ff

1 1.5 2 25 3
X=r/d

FIG. 15. RDF for different, relatively low, packing fractions.
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35

2
X=r/d

FIG. 16. RDFs for two T-algorithm packs, 7,=1 and
T(): 109

of these trials, but we came to the conclusion that Ar
=0.005d lies within an optimal band. We make the same
choice for bidisperse packs when d is taken to be the diam-
eter of the smaller spheres.

The growth rate a is an important parameter in the a
algorithm; large values prevent the spheres from distributing
themselves in a tight fashion; small values permit such a
distribution. Similar consequences arise using the 7' algo-
rithm when 7|, and the tolerance are varied. Figure 15 shows
the RDFs for three packs of mass fractions typical of those
that can be generated using the a algorithm. It is noteworthy
that the peak at y3 apparent at the highest packing fraction is
completely lost at the lowest. It is also noteworthy that for no
pack do we see a peak at (2/3)V6=1.633... [see Fig. 14(b)].
The tetrahedron arrangement is characteristic of the close-
packed lattice and does not appear to arise in low-density
random packs.

A similar exercise using the full power of the T algorithm
yields far more striking results. Figure 16 shows the RDFs
for the two packs of Figs. 7 (T,=1) and 8 (T,=10°). The
many peaks for the high-temperature result (including one at
1.633...) reveal the high degree of order in this pack. Later
we shall compare it with the RDF of a close-packed lattice.

Double-nested configuration

100 1

801 1

60" ~ 1

a(Xx)

1 1.5 2

3.5

|| \I || L]
2.5 3

X=r/d

FIG. 17. RDF of double-nested lattice.
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Close-packing configuration
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FIG. 18. RDF of close-packing lattice.

XIV. RDFs FOR LATTICES

We have noted that the peaks in figures such as 15 arise
because of specific nonrandom structures. Lattices consist
entirely of nonrandom structures, and it is of interest to ex-
amine the peaks that then arise; in principal, all can be ex-
plained by geometry. Since this has been discussed before,
we shall just provide a brief description of double-nested and
close-packed lattices. The former has a packing fraction typi-
cal of packs generated numerically; the latter has a signifi-
cantly higher packing fraction, but has order that is related to
that of high-density numerical packs.

A. Double-nested lattice

The double-nested lattice is shown in Fig. 3(a), and the
RDF in Fig. 17. The first six peaks, easily identified from the

lattice geometry, are at 1, \/§=1.224..., \/%:1.581..., NE)
=1.732...,2, and \5=2738. ..

B. Close-packing lattice

The close-packed lattice is shown in Figs. 3(b) and 3(c),
and the following peaks can easily be identified: 1, \2
=1414..., %V’g=1.632..., Vv3=1.732..., 2, and V5=2.236....

2

—— Close-packing
T,= IOPa

1.5

g9(X)

o5t k-t

2
X=r/d

. RDF of the pack of Fig. 8, and close-packing
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Experimental comparison of a loose packing

| : : _{|——Aste - Pack B (p = 59.6%)
2 7| —— Model (p = 59.95%)
”
s 1f
1 1.5 2 25 3 35 4 45
X=r/d

FIG. 20. RDF comparison with experimental data, (a).

Note that the peak at 1.632...
arrangement of Fig. 14(b).

The RDF is shown in Fig. 18. And in Fig. 19 we show the
values along with the RDF of the T-algorithm pack of Fig. 8.
In view of the packing fraction of the pack (70.35%), it
might be thought that we should compare its RDF with that
of the double-nested lattice (packing fraction 69.81%), but
there is little correlation between the two. On the other hand,
there is clearly a strong correlation for the close-packing lat-
tice. Thus, although we are still significantly shy of the close-
packing density (74.05%), the pack must have a morphology
that has many of the characteristics of the lattice.

arises from the tetrahedron

XV. COMPARISONS WITH THE MONODISPERSE
DATA OF ASTE et al.

RDFs for packs generated using the Lubachevsky-
Stillinger algorithm have been reported before, e.g., [20], but
here we compare the calculated results with experimental
data. For it is, we believe, important that the packs used in a
virtual engineering framework have the same statistics as the
real packs. It is possible, of course, that real packs will have
different statistics according to the manner in which they are

Experimental comparison of a packing

; : . |—Aste - Pack D (p = 62.6%)
2r 7| —— Model (p = 62.55%) I
=
B 1
0.5_ b s areiad
1 1.5 2 25 3 35 4 a5
X=r/d

FIG. 21. RDF comparison with experimental data, (b).
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Experimental comparison of a dense packing
: ! [—aste- PackF ™ =l64.0%)
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g(X)
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1 1.5 2 2.5 3 3.5 4 45
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FIG. 22. RDF comparison with experimental data, (c).

generated, a matter that we are not in a position to address at
the present time, but Aste and his colleagues at the Australian
National University in Canberra have measured the RDFs for
a number of monodisperse packs using x-ray tomography
[31,22], and have provided us with their raw data so that we
might make comparisons, and we do that here. Our packs use
35 000 spheres in a periodic cube and are generated using the
T algorithm with packing fractions of 59.95%, 62.55%, and
64.03%; the experimental packing fractions are 59.6%,
62.6%, and 64.0%. The comparisons are shown in Figs.
20-22.

We note the coordinates of the first two peaks lying to
the right of X=1.5, the model coordinates first, the experi-
mental coordinates second: {Pack B: peak 1 (1.735,1.26),
(1.730,1.22); peak 2 (1.995,1.71), (1.980,1.59)}; {Pack D:
peak 1 (1.730,1.50), (1.720,1.30); peak 2 (1.995,1.91),
(1.985,1.55)}; {Pack F: peak 1 (1.730,1.74), (1.730,1.50);
peak 2 (1.995,2.07), (1.985,1.77)}. Note that the model peak
values are always greater than the experimental ones, signifi-
cantly so in some cases. But these differences are consistent
with errors in the experimental measurements. Aste et al.
assume a Gaussian uncertainty in the center distance for two
touching spheres, and estimate that the average standard de-
viation is 0.015 diameters. If we randomly adjust the model
center coordinates accordingly, and recalculate the RDFs, the

3
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FIG. 23. g,-6.5:1 Bidisperse packing, case A.
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FIG. 24. g,-6.5:1 Bidisperse packing, case A.

model peaks are decreased and more closely match the ex-
perimental values. Similar smoothing would occur if we al-
lowed for a distribution in the sphere diameters.

XVI. RDF OF BIDISPERSE PACKS

For polydisperse structures the counterpart to the RDF
function is the partial pair correlation function (gij(X)), the
number density of particles of type j that are within shells r
to r+Ar centered on particles of type i. The function is nor-
malized so that it has the value 1 as r—oc, and it defines a
symmetric matrix. In its determination there is a problem if
the size ratio of the particles is large. For example, for a
16.5:1 ratio in a pack of 50 000 spheres there are only 45
large spheres vs 49 500 small spheres. In this case the statis-
tics involving only the coarse component are nonrepresenta-
tive.

A. Pack with size ratio 6.5:1, case A

We consider a pack with 50 000 particles, a 9 to 1 coarse-
to-fine mass ratio (i.e., 90% of the mass comprises coarse
particles), and a packing fraction of 68.7%. It is close to one
of McGeary’s data points [21]. Figure 23 is a plot of g,
where the index 1 refers to the larger particles. Because, as
we have already noted, there are so few of these, the function

-
T

4 5
X=r/d
m

in

FIG. 25. g,,-6.5:1 Bidisperse packing, case A.
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FIG. 26. g,-6.5:1 Bidisperse packing, case B.

is noisy, but trends are apparent. They are similar to those of
a monodisperse pack, not a surprising observation. Recall
that d is the diameter of the smaller particles. Figure 24 is a
plot of g, and reveals structure in the neighborhood of X
=4.5 and 10. And Fig. 25, a plot of g,,, reveals order at X
=2 and in the neighborhood of X=7.7.

B. Pack with size ratio 6.5:1, case B

Here we change the mass ratio to 75% coarse, 25% fine,
achieving a 73.1% packing fraction. Now there are so few
coarse particles that it is difficult even to observe trends in
g11, and so we do not show it. Figure 26 displays five well-
defined peaks for X smaller than 8 for g,, and Fig. 27 shows
a number of peaks for g,,. Some of these can be understood
within the monodisperse framework, but others are a conse-
quence of the bidisperse morphology. Thus a layer of small
particles in contact with a large one will generate a peak in
g1» at X=3.75, Fig. 28. The closest small particles in a sec-
ond layer beyond the first define a peak at 4.61, Fig. 28, the
furthest at 4.75, Fig. 29, and so one might expect a single
averaged peak between these two limits.

XVII. BOUNDED MONODISPERSE PACKS

In the earlier sections we only considered unbounded pe-
riodic packs, but in applications there are always boundaries,

ol
1.5}
x
3
o
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0.5 1
ot ]
1 2 4 5 6 7 8
X=r/d
min

FIG. 27. g,,-6.5:1 Bidisperse packing, case B.
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Peak at
X=4.61

;

/

Peak at
X=3.75

FIG. 28. A possible local configuration for a 6.5:1 bidisperse
pack, (a).

and it is of interest to examine the effects of rigid boundaries
on the pack morphology. We have examined three different
pack geometries: a bounded cube, a bounded right-circular
cylinder of infinite length, periodic along the axis, and a
finite right-circular cylinder, bounded on all sides, but only
present results for the latter configuration.

In the generation of such packs using the Stillinger algo-
rithm, collisions must be accounted for between the spheres
and the walls, and the code is easily modified to accommo-
date these. Our discussion is concerned only with the results.
That there will be wall effects (a wall layer) is recognized,
for example, in the experimental work of Aste and his col-
leagues [22]; because they are interested in the properties of
unbounded packs, they randomly glue spheres to the walls in
an attempt to eliminate the wall layer. Our purpose here is to
identify the thickness of the wall layer, and some understand-
ing of its morphology. We only consider monodisperse
packs.

There are various ways of characterizing the local pack
structure, and we choose to do it in the following fashion. We
start by defining a sampling volume or bin. Thus for a cube,
for example, a sensible choice would be a sheet of finite
thickness parallel to two of the bounding faces; for a cylinder
it would be either a cylindrical shell coaxial with the cylin-
der, or a finite thickness circular disk perpendicular to the
axis. In each bin of volume V we count the number of sphere

Peak at
X =4.75

|

\

Peak at
X=3.75

FIG. 29. A possible local configuration for a 6.5:1 bidisperse
pack, (b).
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FIG. 30. Center-number density along the axial direction calcu-
lated for different bin numbers.

centers located within it, and use this number (N) as a mea-
sure of the number of particles within the bin, defining a
center-number density by

N
)\=‘—/. (11)

Thus consider a bounded cylinder of height 2, diameter 2/3,
containing 100000 particles. The packing fraction is
62.57%, the overall number density is 143 239.4, and each
particle has a diameter of 0.0202. Figure 30 shows the axial
variation of center-number density for different choices of
the number of bins. The axial distance is defined by the
center of each bin. Note that for 1000 bins each bin has
thickness 0.002, for 500 bins the thickness is 0.004, and for
100 bins the thickness is 0.02, essentially the particle diam-
eter.

A couple of observations may be made.

(1) If the particle centers were randomly distributed, the
center-number density would be constant. This is approxi-
mately true at a distances greater than 0.1 from each end, but
not within the wall layer which, accordingly, is approxi-
mately 5 particle diameters in thickness.

(2) The large oscillations within the wall layer imply or-
der imposed by the boundary constraint. Indeed, there are
5-6 peaks in the layer, correlating with the particle diameter.
Thus, for example, for a cubic lattice (for which the follow-
ing estimates are easily made) there would be approximately
890 particles in each layer near the end walls, and for a bin
thickness exactly equal to the particle diameter the center-
number density would be constant with a value of approxi-
mately 1.28 X 10°. For a bin of vanishing thickness the
center-number density would be zero except at distances
d/2,3d/2,5d/2,... from an end wall (d=0.0202 is the par-
ticle diameter) where the values would be approximately
2550/ where u is the bin thickness, yielding 12.75 X 10
for the 1000 bin case, 6.38 X 10° for the 500 bin case.

Figure 31 shows the radial distribution of the center-
number density for 100 bins (shell thickness 0.0033) and 200
bins (shell thickness 0.0017) and, as expected, here also the
wall layer is 5—6 particle diameters thick. The expected
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FIG. 31. Center-number density along the radial direction.

peaks for a local cubic lattice structure are approximately
7.73 % 10° for 100 bins, and 15.27 X 103 for 200 bins.

To gain more insight into the structure, we have replotted
Fig. 31 in Fig. 32 using 333 bins (shell thickness 0.0010) and
measuring the distance from the side wall in units of the
particle diameter (scaled shell thickness 0.0496). Also the
number of sphere centers is plotted, rather than their density.
For a double-nested lattice the peaks would be at
{0.5,1.366,2.232,3.098,3.964}; for a close-packed lattice
they would be at {0.5,1.317,2.133,2.950,3.766}. We shall
compare our peaks with the latter.

Thus the first peak (the 11th bin) is located in the interval
[0.496,0.546], of which 0.5 is an interior point. The second
peak is at the 28th bin, and the one to its immediate left (the
27th) is located in the interval [1.290,1.339], which includes
1.317. The third peak is at the 45th bin, and the one to its
immediate left (the 44th) is located in the interval
[2.133,2.182], which includes 2.133. The fourth peak is at
the 61st bin, and the one to its left is located in the interval
[2.926,2.976], which includes 2.950. The fifth peak is at the
78th bin, and the one to its left is located in the interval
[3.769,3.819], which barely excludes 3.766. Thus, as would
be expected for an imperfect lattice, there is a small outward
displacement in the mean particle locations from what one

Number of particles
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o v o o
o o o o
o o o o
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1.5 2 25 3 3.5 4
Distance from side wall in particle diameter

i

0.5 1

FIG. 32. Particle distribution vs wall distance (in particle
diameters).
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would get for a perfect lattice, but the correlation with the
close-packed lattice is very strong.

XVIII. CONCLUSIONS

In this paper we have used a modified version of the
Lubachevsky-Stillinger code to examine sphere packings in a
context relevant to the modeling of rocket-propellant mor-
phology. Various algorithmic refinements enable us to pack
large numbers of spheres, of different sizes, in an efficient
manner. Run times on a laptop computer are sufficiently
modest that, with the addition of a graphic user-interface
(GUI) (presently under development), the code could be of
value to both the university and the industrial community.
Packs can be generated in periodic cuboids, bounded
cuboids, and in cylinders that are bounded or periodic along
the axis.

The initial conditions include the specification of the ve-
locities of randomly distributed points, and we do this in one
of two ways: for the T algorithm, for which the maximum
growth rate is 1 and the velocity or growth-rate ratio is con-
trolled by a pseudotemperature 7T, the initial velocity com-
ponents are proportional to V’To and are sampled from a nor-
mal distribution; for the a algorithm, the ratio is controlled
by a and the velocity components are sampled on the interval
[-1,1]. The T algorithm is capable of generating monodis-
perse packs of high density, higher than that of a double-
nested lattice, and these high-density packs display signifi-
cant order.

For bidisperse packs, using the a algorithm, we have com-
pared the variations in packing fraction with the fine-mode
percentage with experimental data of McGeary. For the
larger coarse-to-fine size ratios (6.5 and 16.5) excellent
agreement is achieved with the choice a=0.2. For the smaller
size ratio (3.5) the choice a=1 yields better results, with the
smaller a leading to significant overprediction. Apparently,
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mechanical shaking is not particularly effective as a packing
tool when the size ratio is small.

A study of the radial distribution function for monodis-
perse packs reveals sharp peaks corresponding to local order.
Only a modest number of such peaks are generated using the
a algorithm, or for modest values of 7| using the T algo-
rithm, but when 7T, is large a large number of peaks can be
generated. When the latter are compared with the peaks de-
fined by a lattice pack, a strong correlation is achieved with
the close-packed lattice. For modest packing fractions (small
number of peaks) there exist experimental measurements of
the radial distribution function, and we obtain excellent
agreement with this data. For bidisperse packs for which the
corresponding statistical metric is the partial pair correlation
function, certain peaks can be correlated with certain ex-
pected arrangements of large and small particles.

For bounded packs (rigid boundaries) it is intuitively clear
that the presence of the boundary introduces local order. In-
deed, there is a boundary-layer effect, and for monomodal
packs the layer thickness is approximately 5 particle diam-
eters. If we examine the pdf of the sphere-center distribution
there are 5+ peaks in the neighborhood of a boundary that
correlate approximately with integer multiples of the sphere
diameter. When examined more closely, the peaks correlate
closely with those that would be expected for a close-packed
lattice.
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